High-Resolution Chopper Spectrometer (PHAROS)

The high-resolution chopper spectrometer, PHAROS, is designed for low-angle studies such as neutron Brillouin scattering and magnetic excitations. The instrument provides 0.5% incident energy resolution for incident energies between 50 meV and 2 eV. The sample is positioned 20 m from the moderator, which is currently chilled water. Phase I is complete, and the spectrometer consists of an evacuated, shielded flight path for low-angle scattering ($1^{\circ} < \phi < 10^{\circ}$).

When Phase II is completed, the spectrometer will be a high-resolution, general-purpose chopper spectrometer with $10~\text{m}^2$ of detectors covering scattering angles between - 10° and 140° . PHAROS will then be able to accommodate the full range of inelastic-scattering experiments, including phonon densities of states, magnetic excitations, momentum distributions, crystal-field levels, chemical spectroscopy, and measurements of $S(Q,\omega)$ in disordered systems. In addition, the low-angle detectors will be available for use at distances between 4 and 10 m with scattering angles down to 0.65° , thus making it suitable for high-resolution inelastic studies at low Q.

Robert McQueeney, 505-665-0841, 505-665-2676 (fax), mcqueeney@lanl.gov

◆Instrument scientist Rob McQueeney, on top of the PHAROS instrument, examines the vacuum pump.

Crystal Field Excitations in PrAg ₂ In		
Energy Levels	2000	E ₁ =25 meV

Beyermann, Kelley, Robinson, Nakotte PHAROS, May, 1997

PHAROS Specifications		
Incident energy resolution	$\Delta E_i/E_i = 0.5\%$	
Moderator-chopper distance	18 m	
Chopper-sample distance	2 m	
Moderator	Chilled water at 283K	
Chopper frequency	60 - 600 Hz	
Chopper diameter	10 cm	
Chopper slit spacing	1 mm or more	
Sample size	up to 5 cm x 7.5 cm	
Detector (Phase I)	1 m ² of detectors at 3.5 m from the sample; scattering angle between -10° and 10°	
Detector (Phase II) Commissioning	9 m ² of detectors at 4 m from the sample; scattering angle between -10° and 140°; 1 m ² of detectors in forward scattering	

Mard Beyermann (UC Riverside) used inelastic-neutronscattering measurements at 7 and 77 K on PHAROS to determine the crystal-electric fields level scheme of Pr³+. The positions and intensities of the data on the right are associated with the level scheme on the left and identify the ground state. PrAg₂In is an example of a new type of f-electron system where a non-magnetic interaction between conduction electrons and the ground state is responsible for its low-temperature behavior.

